AMD phenotype and distinguishing clinical features

<table>
<thead>
<tr>
<th>Normal aging changes</th>
<th>Optical coherence tomography (OCT)</th>
<th>Fundus autofluorescence (FAF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Drupelets only (<63µm diameter, up to approximately half the width of a large vein at the disc margin)</td>
<td>• Drupelets appear as just detectable discrete irregularities or elevations of the RPE with variable internal reflectivity</td>
<td>• Drupelets may colocalise with punctate spots of normal, hyper- or hypo-fluorescence</td>
</tr>
<tr>
<td>• Should not show any characteristics of early, intermediate or late AMD</td>
<td>• Some drupelets may be too small for OCT to resolve</td>
<td>• FAF may also appear normal with the central macula showing diffuse, homogeneous autofluorescence and a gradual reduction in signal approaching the fovea</td>
</tr>
</tbody>
</table>

Early AMD

Medium drusen only (63 to 125µm diameter)	Medium drusen typically appear as discrete elevations of the RPE with variable internal reflectivity (similar to drupelets)	Similar to drupelets, medium drusen may display a variable normal, hyper- or hypo-fluorescence pattern
Should not have any of the characteristics of intermediate or late AMD		• A range of patterns may be observed in early and intermediate AMD including: normal, minimal change, focal increased, patchy, linear, lacelike, reticular, speckled, focal confluent, focal plaque-like or scattered
May present with a different stage of AMD in the fellow eye		

Intermediate AMD

Large drusen (>125µm in diameter) and/or pigmentary abnormalities (hyper- or hypo-pigmentary changes associated with at least medium sized drusen)	Large drusen may appear as dome shaped, occasionally confluent, elevations of the RPE, with visible underlying BM	• May reveal any of the patterns described under early AMD
No characteristics of late AMD	• May be associated with: overlying disruption of the EZ and ELM, subsidence of INL or OPL, and/or inhomogeneous choroidal hypertransmission due to focal interruptions of RPE (incomplete RPE and outer retinal atrophy)	• Predominantly reveals spots or punctate hyper-fluorescence
	• Hyper-pigmentary abnormalities may be seen as discrete hyper-reflective foci (in the ONL or attached to drusen) with posterior shadowing	• Less commonly, spots of hypo-fluorescence and lines of hyper-fluorescence may also be observed
		• Patchy, linear and reticular FAF patterns have been associated with a higher risk of conversion to neovascular AMD

Late AMD (Geographic atrophy or Complete RPE and Outer retinal atrophy)

Any sharply delineated round or oval hypopigmented areas at least 250µm in diameter that feature apparent absence of the RPE and increased visibility of choroidal vessels	Absence of RPE causes sharply demarcated areas of homogenous choroidal hypertransmission >250µm	Single or multiple areas of well-demarcated marked hypo-fluorescence
Areas may coalesce to form a ring type configuration, eventually involving the fovea centralis	Associated outer retinal atrophy is seen as thinning or loss of the ONL, ELM and EZ which may extend or taper beyond the margins of the GA	• Foveal sparing is characterised by irregular hypo-fluorescence at the residual foveal island (such as in this example) or a symmetrical and gradual reduction in FAF approaching the fovea
May be preceded by calcification of large drusen and/or drusen regression	Also displays signs of other AMD stages	• The “diffuse trickling” pattern in this image is associated with a significantly higher rate of progression
Also displays signs of other AMD stages		• FAF may enable better detection of discrete/small areas of GA

Abbreviations: Bruch’s membrane (BM), Ellipsoid zone (EZ), External limiting membrane (ELM), Inner nuclear layer (INL), Outer plexiform layer (OPL), Outer nuclear layer (ONL)
AMD phenotype and distinguishing clinical features

Late AMD (Neovascular AMD)
- May be characterised by any of: RPE detachment(s), neurosensoryst retinal detachment, intraretinal, subretinal or sub-RPE scar/ glial tissue or fibrin like deposits, subretinal haemorrhages and/or hard exudates
- Neovascular lesions may appear subtle, green-grey or pink-yellow often complicated by the secondary signs above
- End-stage: Regression of the vascular component and an increase in the fibrous component, and may appear as a disciform scar

Reticular macular disease
- Indistinct, typically interlacing, yellow-white, round or oval lesions ranging from 125 - 250µm in diameter
- Visibility enhanced with blue or infrared light
- Can present in conjunction with other AMD features

Cuticular drusen
- Numerous, densely packed, relatively uniform, small drusen, better seen using FA, described as a “starry-sky” pattern
- 50 to 75µm in diameter

Familial dominant drusen/Doyne’s honeycomb dystrophy/Malattia leventinese
- Numerous drusen that extend beyond the vascular arcades and often nasal to the optic disc
- Age of presentation is typically between 20-30 years (younger than of typical AMD)
- Bilateral, radially distributed and relatively symmetrical

Optical coherence tomography (OCT)

- PEDs present as broad elevations of the RPE band anterior to BM
- Fibrovascular PEDs show irregular internal reflectivity with/without serous exudation
- Serous PEDs are well demarcated, dome shaped and smooth with internal homogeneous hyporeflectivity
- Haemorrhagic PEDs appear as elevations of the RPE with no reflectivity within or under the PED
- Sub-RPE, subretinal or intra-retinal fluid may be present and indicative of AMD related choroidal neovascularisation
- End stage: Well-demarcated, highly hyper-reflective lesions associated with loss and dysplasia of the overlying retinal layers

Fundus autofluorescence (FAF)

- FAF changes corresponding with areas of choroidal neovascularisation may be characterised by its inherent features as follows:
 - Subretinal fluid corresponds with increased FAF in approximately 56.5% of cases
 - Haemorrhages, exudate and fibrovascular membranes are likely to cause hypo-autofluorescence patterns
 - Can also present with normal or near normal FAF imaging results
 - End stage: Disciform scarring consistently demonstrates uneven hypo-autofluorescence of the lesion, surrounded by marked hyper-autofluorescence

- Reticular pseudodrusen may colocalise with subretinal drusenoid deposits which appear as deposits above the RPE

- Appearance as low contrast hypo-fluorescent, circular, networked deposits
- Individual lesions may also have a “target-like” appearance (iso-fluorescent core and surrounding hypo-fluorescent halo)

- Blunted triangular appearance with a saw tooth pattern

- May reveal numerous hypo-fluorescent “dots”

- Drusen characteristics are similar to those seen in AMD
- Larger, round drusen are typified by confluence and more diffuse deposition between the RPE and BM

- Reveals marked hyper-fluorescence of large drusen
- Smaller radially distributed drusen appear more faint